翻訳と辞書
Words near each other
・ Morris Chapel
・ Morris Chapel, Tennessee
・ Morris Chapman
・ Morris Chestnut
・ Morris Childs
・ Morris Claiborne
・ Morrie Rath
・ Morrie Ryskind
・ Morrie Schick
・ Morrie Schwartz
・ Morrie Silver
・ Morrie Steevens
・ Morrie Turner
・ Morrie Wood
・ Morrie Yohai
Morrie's law
・ Morrigan (band)
・ Morrigan (disambiguation)
・ Morrigan Aensland
・ Morrigan Press
・ Morrighan
・ Morrill
・ Morrill Anti-Bigamy Act
・ Morrill Cody
・ Morrill County Courthouse
・ Morrill County Sheriff's Office
・ Morrill County, Nebraska
・ Morrill Hall
・ Morrill Hall (disambiguation)
・ Morrill Hall (Iowa State University)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Morrie's law : ウィキペディア英語版
Morrie's law
Morrie's law is a name that occasionally is used for the trigonometric identity
: \cos(20^\circ) \cdot \cos(40^\circ) \cdot \cos(80^\circ)=\frac.
It is a special case of the more general identity
: 2^n \cdot \prod_^ \cos(2^k \alpha)=\frac
with ''n'' = 3 and α = 20° and the fact that
: \frac = \frac = 1
since
: \sin(180^\circ-x) = \sin(x).
The name is due to the physicist Richard Feynman, who used to refer to the identity under that name. Feynman picked that name because he learned it during his childhood from a boy with the name Morrie Jacobs and afterwards remembered it for all of his life.〔W.A. Beyer, J.D. Louck, and D. Zeilberger, ''A Generalization of a Curiosity that Feynman Remembered All His Life'', Math. Mag. 69, 43–44, 1996.〕
A similar identity for the sine function also holds:
: \sin(20^\circ) \cdot \sin(40^\circ) \cdot \sin(80^\circ)=\frac.
Moreover, dividing the second identity by the first, the following identity is evident:
: \tan(20^\circ) \cdot \tan(40^\circ) \cdot \tan(80^\circ)=\sqrt 3 = \tan(60^\circ). \,
==Proof==
Recall the double angle formula for the sine function
: \sin(2 \alpha) = 2 \sin(\alpha) \cos(\alpha). \,
Solve for \cos(\alpha)
: \cos(\alpha)=\frac.
It follows that:
:
\begin
\cos(2 \alpha) & = \frac \\()
\cos(4 \alpha) & = \frac \\
& \alpha)}.
\end

Multiplying all of these expressions together yields:
: \cos(\alpha) \cos(2 \alpha) \cos(4 \alpha) \cdots \cos(2^ \alpha)=
\frac \cdot \frac \cdot \frac \cdots \frac.
The intermediate numerators and denominators cancel leaving only the first denominator, a power of 2 and the final numerator. Note that there are ''n'' terms in both sides of the expression. Thus,
: \prod_^ \cos(2^k \alpha)=\frac,
which is equivalent to the generalization of Morrie's law.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Morrie's law」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.